## Home Connection

In third grade, students added and subtracted fractions with like denominators when the total was less than or equal to 1 . This chapter introduces fourth graders to adding and subtracting both proper and improper fractions.

## Adding and Subtraction with Like Denominators

Similar to how whole numbers count like objects, fractions can count like units. These units are equal sized parts of a whole number, such as sevenths or fifths. To add or subtract fractions, the unit, or denominator, must be the same. We can easily add $\frac{5}{7}$ and $\frac{2}{7}$. An analogy that might be helpful for students to understand why finding common denominators is important is we can add 5 feet and 2 feet, but not 5 feet and 2 yards.

## Addition and Subtraction with Unlike Denominators

Students will learn to add fractions in which one denominator is a simple multiple of the other. For example, $\frac{3}{4}$ and $\frac{1}{2}$ have unlike denominators, but they are considered "related fractions". Students can see that 2 is a factor of 4 and 4 is multiple of 2 . To add these related fractions, we must find an equivalent fraction for one of the fractions. In this chapter, each time a student is asked to add or subtract unlike denominators, the denominators will always be related in some way.

Example: $\frac{3}{4}+\frac{1}{2}$
We want to change our smaller denominator to our larger denominator. We see that 2 can change to a 4 by multiplying by 2 . What is done to the denominator, must also be done to the numerator, so we will multiply our 1 by 2 as well.

Now we have: $\frac{3}{4}+\frac{2}{4}=\frac{5}{4}=1 \frac{1}{4}$

## Adding Mixed Numbers

There are two methods to add mixed numbers.

Method 1: Students can start by adding the first mixed number and whole number of the second mixed number. Next, they add the remaining fractional part of the second number.


Method 2: Add the whole number parts and the fraction parts separately.

$$
\begin{aligned}
3+\frac{1}{2}+1+\frac{5}{8} & =3+1+\frac{1}{2}+\frac{5}{8} \\
& =4+\frac{4}{8}+\frac{5}{8} \\
& =4 \frac{9}{8}=5 \frac{1}{8}
\end{aligned}
$$

## Subtracting Mixed Numbers

To subtract a fraction from a mixed number when the fraction part of the mixed number is less than the fraction being subtracted, students will regroup 1 whole to a fraction in order to have enough parts from which to subtract.

For example:
$2 \frac{1}{6}-\frac{2}{3}$
As $\frac{2}{3}$ is greater than $\frac{1}{6}$, we can think of 2 as 1 and $\frac{6}{6}$ and then add the sixths together:
$\frac{2}{3}$ is converted to $\frac{4}{6}$ and now it is possible to
subtract the fractional part.
$1 \frac{7}{6}-\frac{4}{6}=1 \frac{1}{2}$
A similar process is followed when subtracting one mixed number from another: $3 \frac{3}{8}-1 \frac{3}{4}=$
Students can subtract the whole number first, and then the fraction, using concepts they have already learned in previous lessons.


Convert the remaining part of the fraction to be subtracted, $\frac{3}{4}$ to eighths: $\frac{3}{4}=\frac{6}{8}$
Now subtract $\frac{6}{8}$ from $2 \frac{3}{8}$. Since $\frac{6}{8}$ is greater than $\frac{3}{8}$, we can think of $2 \frac{3}{8}$ as $1+\frac{8}{8}+\frac{3}{8}$ or $1 \frac{11}{8}$.
Solve:

$$
\begin{aligned}
& 2 \frac{3}{8}-\frac{6}{8}=1 \frac{11}{8}-\frac{6}{8} \\
& 1 \frac{8}{8}=1 \frac{5}{8}
\end{aligned}
$$

Students may also find that it is easier to convert mixed numbers to improper fractions, subtract, and then simplify.

## Activity

- Decomposing Fractions

Have students find different ways to decompose fractions.

For example, $\frac{7}{8}$ can be decomposed to:

- $\frac{6}{8}+\frac{1}{8}$
- $\frac{5}{8}+\frac{2}{8}$
- $\frac{4}{8}+\frac{3}{8}$
- $\frac{5}{8}+\frac{1}{8}+\frac{1}{8}$
- $\frac{2}{8}+\frac{2}{8}+\frac{3}{8}$

